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Multifractal analysis of tori destruction in a molecular Hamiltonian system
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In this paper, an analysis of the phase space structure of the isomerizing molecular system LINC/LIiCN,
using Poincareurfaces of section and frequency analysis, is presented. The scaling structure of the frequency
map in the chaotic region next to the regular part corresponding to the stable linear isomer LINC is studied
using multifractal analysis. This approach is a way to characterize quantitatively the complexity in the mecha-
nism of the tori destruction in a molecular Hamiltonian system that exhibits soft chaos as the vibrational energy
of the system increases.
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[. INTRODUCTION two associated manifolds, one incoming and another outgo-
ing, whose repeated crossings form the homoclinic tangle: a
From the vibrational point of view, molecules can be con-band of stochasticity that can be tiled, classifying the differ-
sidered as Hamiltonian systems formed by a collection ofNt regions according to their dynamical properitefs Can-
nonlinear anharmonic coupled oscillators. The correspondin{p!i @re fractal object6], originated by the destruction of
classical dynamics can be interpreted in terms of phase spal £ “not irrational enough” tori in the unperturbed system;

: " at act as partial barriers in the chaotic regions of phase
structures that, although envisaged by Poineanie end of space. As perturbation increases, the fractal dimension of

the nineteenth century, could only be properly studied aftefhese structures decreases, and the corresponding barrier ef-
the development of modern digital computéid. For low  fect weaken$7]; at the same time more and more KAM tori
levels of excitations molecular motions take place in the Vi-gnter into this category. Then, the dynamical bottleneck in a
cinity of the minima of the potential energy surface, definedgiven phase space region corresponds to the most intact can-
within the Born-Oppenheimer approximation. In this har-tori, i.e., the last broken KAM torus corresponding to that
monic regime the motion is regular, corresponding to thewith the most irrational frequency ratio. According to the
well known normal mode picturg2]. The combination of continued fraction theor{8], this corresponds to the golden
anharmonicities and strong mode couplings, as vibrationainean, defined as

energy increases, makes molecules nonintegrable dynamical

systems, with the possibility of undergoing chaotic motion 1 1 1+ J5 !
[3]. The celebrated Kolmogorov-Arnold-Mos@¢AM ) theo- y=1+ 1 2 @
rem provides a very powerful framework to understand this 1+ 1t...

transition to chaos. When some perturbation acts on an inte-

grable system some tori are destroyed, but those with “irra- The destruction of tori has been systematically studied in

tional enough” frequency ratio§in the sense of the KAM the standard maf8] by a number of authori], and some

condition, called KAM tori, survive[4]. In two-degrees-of-  fractal structures in the diagrams of the breakup of tori had
freedom(2dof) systems, these structures establish a hierarbeen identified by Schmidt and Bial¢kQ].

chical organization of phase space. The family of persistent There are numerous methods to investigate the structure

KAM tori, parametrized by a Cantor set of frequency vectorsof phase space. In systems with a 2dof composite Poincare

in the “holes” of which chaotic behavior takes place, consti- surface of sectiofSO9, consisting of the intersection of the

tutes an impenetrable barrier for the flux of trajectoriestrajectories at a given energy with suitable surfaces, there is
across. The destroyed tori turn into periodic orlfR©), ho-  more informative than other tooldl1], such as Lyapunov
moclinic tangles, and cantof8]. Periodic orbits correspond exponents or Kolmogorov entropy. Unfortunately, a SOS is
to resonant motior{rational frequency ratjoand are orga- not feasible for systems with more than 2dof.

nized in phase space according to a Farey tree distribution An alternative method is that of frequency analy$is.),

[5]. Emanating from each unstable PO fixed point there argvhich is based on a Fourier representation of trajectories.
The FA method involves monitoring the variations of the
fundamental frequencies of the system with time. In the case

*Electronic mail: rbenito@fis.etsia.upm.es of regular motion, an analytical representation for the solu-
"Electronic mail: f.borondo@uam.es tion of the Hamilton equations of motion is obtained,
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whereas when the dynamics are chaotic the expansion does
not converge. However, FA is still able to provide some in-
formation of the localshort time dynamigscharacteristics
of the chaotic motion. The advantage of this method is that it
can be applied equally easily to systems with more than 2dof
[12], so that is suitable to study the poorly understood Arnold
web[13].

In a previous papdrl4] we used the FA, as implemented
by Laskar[15] in his analysis of the stability of the solar
system[16], to study the phase space structure and local

behavior of chaotic trajectories of a complex molecular % 30 60 90 120 150 180
isomerizing system: the LINC/LICN molecule. One of the V(deg)

most interesting conclusions of the paper was to reveal that, ) .
contrary to what could be expectedpriori, the chaotic re- FIG. 1. Contour plot of the potential energy surface of LINC/

gion for energies in the range 29503850 <nwas ex- LICN. The minimum energy path connecting the two potential
wells is shown superimposed as a dotted line.

tremely influenced by a single PO, in which the stretching
Li-CN and the bending motions were coupled by a (r8-
guency resonance. Frequency maps provide very useful in
formation on the way in which the trajectories evolve in
phase space.

mechanics. This is a floppy molecule with a large amplitude
motion in the bending Li-CN coordinate which couples very
efficiently with the corresponding stretching mode, and a

The aim of this paper is to study in deeper detail thehigh frequency mode associated with the stifE chemi-

characteristics of the chaotic region, especially its bordef@ Pond. Accordingly, the CN mode can be considered from

near the regular one, in this molecular system. As it is We"the practical point of view separated from the rest of molecu-

known, the coexistence of the different types of dynamical® motions, and a reduced 2dof model, in which the IC
structures that we have just described impose a fractal strudiStance is held frozen at its equilibrium valuerqf=2.186

ture, self-similar at different scales, into the phase space if:U-» ¢@n be used to adequately describe its dynamics. The
which they are embedded. For this purpose, we will carry ouf!oPPY bending motion samples big regions of the potential
a multifractal analysiéMFA) [17] of the frequency map con- energy surface_t, a.nd then chaos sets in at very moderate val-
sisting of the frequency ratio vs the initial bending angle!€S Of the excitation energy. o
representation. Furthermore, by considering the results ob- 1N€ classical vibrational)(=0) Hamiltonian is given by
tained at different values of the excitation energy, we can

follow the process of destruction of KAM tori. P2 1 1 5
Other complex processes occurring in nature, such as tur- H= 2u.-CN *3 111,-CNR? +MC'NF2 Py+V(R,0),
bulence[18], large-scale structure formatidi9], particle : e @

size distribution in soil$20] or diffusion-limited aggregation

[21], to name just a few, are also believed to be organized ifyhere R is the distance from the Li atom to the center of
a self-similar or self-affine way. Statistical self-similar mea- ,,oss of the CN fragmend is the angle between the N-C

sures arise naturally in phenomena associated with nonline%dR vectors, ancPg and P, are the corresponding conju-
or chaotic systems. A convenient tool to characterize the Corbate momenté. R v

figurations of these processes is also M2®,23, which The potential energy surface(R, #), shown in Fig. 1 in

considers the statistics of singularity strengths of multiplee torm of a contour plot, has been taken from the literature

local scale invariance, since in most cases a specific descri ; PR
) ’ ) CrPa5), and consists of a ten term expansion in Legendre poly-
tion of the system must be abandoned in favor of probabilis; ] P 9 poly

. . ) . . omials,

tic ones. This scale invariance is normally a consequence or}

some hierarchical organization of the underlying process 9
[18]. So in this way moments and cumulants are studied to _

get information and characterize scale invariance or scale V(R.6)= ;0 Va(R)P,(cos0), ®
affinity, or to detect them if this is not the case.

The organization of the paper is as follows. In Sec. Il thefitted toab initio calculations. As can be observed, it has two
model is briefly described. Section Il is devoted to the de-potential wells corresponding to the stable linear isomers:
scription of the computational methods used in this paperLi-NC (#=180°) and Li-CN @=0°). Theminimum energy
The results of our work are presented and discussed in Segath, Ry(6), connecting these two isomers has also been
IV, and finally we end the paper by summarizing our conclu-plotted in the figure.
sions in Sec. V.

I1l. COMPUTATIONAL METHODS
Il. MODEL A. Dynamical study
In this paper we study the vibrational dynamics of the The dynamics of the system is studied using classical tra-
isomerizing molecular system LICN/LINC using classical jectories calculated by numerical integration of the Hamilton
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equations of motion corresponding to Eg), using a hybrid  starting from an initial guess calculated with a standard fast
Gear algoritm[26]. The phase space structure is visualizedFourier transform(FFT) method[29]. The other frequencies
by computing a Poincar80S taking the sectioning plane are obtained in a similar way by searching for those values of
lying along the minimum energy patRq(6) [27]. Owingto  »,, maximizing

the fact that the sectioning coordinate does not correspond to

a constant value of any of the canonical coordinates used to dn(v)=(e"lf _1(1)), 9)
define the Hamiltonian function, the Poinca®®S so de-

fined does not have th@mportan}y property of being an where thef,,_;(t) functions are obtained by eliminating
area-preserving map. In order to solve this problem we maké&om f(t) the contributions from the previously determined

the following canonical transformatidi28]: frequencies{vy,v,, ..., v _1}. _
Since the basis set formed by the elemegits' is not
p=R—R.(6), orthogonal, it is necessary at this point to carry out a Gram-

Schmidt orthonormalization procedure. After that, one ob-
tainsf(t) as

=0,
P,=Pg. f(t)=2, bpe'™. (10
n
dR, In this way very accurate fundamental frequencies can be
P,= Pﬁ(w) P,. (4)  determined.

When performing the scalar products a Hanning window

With these new coordinates we can now define the Po'incarftlalter’

SOS ap =0 with P, chosen as one of the roots obtained by
substituting Eq(4) in Eqg. (2), which corresponds to mapping
the trajectories of the system in the¢;,P,) plane.

x(t)=1+cogwt/T), (11

is used to accelerate convergence.

B. Frequency analysis(FA) C. Multifractal analysis (MFA)

For each trajectory the complex functions The results obtained from the frequency analysis are stud-

ied in terms of the percentage of frequencies distributed in

different initial conditions @ angle . Thus, the measuig in

this system is defined by the fraction of the frequencies in an

()= 0(t)+iP4(1), (5) angle class I'.” The support of this measure is the set of real
numbers corresponding & values fromé, to 6; degrees.

fr()=R(t)+iPg(1),

rying out FA as described below. quencies of a certain value within the interval i being
The f(t) functions can be written as P(6o.0¢]1=1 (or 100%. N
The structure of this probability measy®n the segment
" (6y,0;] may be defined by the scaling relationship
— imnt/T
f(t) n;w ane ’ (6) p0(5a as 5_>0, (12)

where the scaling exponent is the so-called Lipschitz-
Holder exponent, and is the length of the subintervals in
which the total segment is divided.
T In general the concentration of frequencies varies widely
an=(e [f(1)), (") over the interval ¢, 6;] and a different behavior is observed
in different spatial positions. Thus, a spectrum of values of
where(|) denotes a complex symmetric inner product, andy, that correspond to different spatial positions, can be de-
not a complex conjugation as usually done in quantum mMefined. In fact, every measugg may be characterized hy;
chanics. The frequencies calculated by the Fourier transforrgch thatp; o 5%. Hence the singularity exponeatis a func-
are determined within a precision ef T [29]. To go beyond  tjon of the positioni, many sites may share the same expo-
this approximation one must resort to a different basis setaents when a regular covering of sidés chosen. Therefore,
using a better suited set of exponents. For this purpose wgt N(«,d8) be the number of sites that share the same

will use the prescription developed by Laskab]. The first  measurep,, which presents the following scaling relation-
frequency,vy, is chosen to maximize the scalar product  gpjp:

where the coefficients,, are the projection of (t) on the
Fourier basis elements,=exp(imnt/T),

d1(v)=(e""f(1)), (8) N(a,8)xcs (@ as §-0, (13
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where thef(a) singularity spectrum describes the statisticallimit §—0, the sum ofp(q,d) is dominated by the term

distribution of the Htder exponenta, or in other words
gives information of how often specific valuasof the sin-
gularity strengths occur2].

This indicates that the density of segmefif«)] of
length 6 with the Hdder exponent valuer in the range
(a,a+da) is approximatelys—f(?), due to

N(a,8)=p(a)da. (14

There are several methods to calculate tfe) singularity

6MNa(@e=@)_ Thenr(q) can be expressed as

m(q)=min,[qa—f(a)]. (22

Thus, 7(q) is obtained by Legendre transforming the
f(a). Whenf(a)and 7(q) are smooth functions we can ex-
press[17]

d
a(Q)=—®T(Q),

spectrum. The method we have used is based on a quantity

called the partition function(x(q,d)), introduced by the
method of the momen{0], as

n(s)

(x(q,é“))=i21 p, (15)

wheren(d) is the number of subintervals of sizein the
largest interval ¢y, 6;], andq is the weight or moment of the
measure. This partition function depends on the séad@d
on the exponer as it can be observed in EEL5). A log-log
plot of a self-similar measurgy(q, 8)) vs & at various values
for q will give

(x(d,8)~ 8",

wherer(q) is theqth mass exponer22] and sometimes is
called the Renyi exponef23]. We can express(q) as

(16)

A= — lim log(x(a,9))
q s.0 logo

7

Then the generalized dimensi@n, can be introduced by
the following scaling relationshif23]:

_ . log(x(q,9))
P M - 1logo’ (9
and therefore
7(q)=(q—1)Dy. (19

On the other hand, the partition function can be expressed

x(q,5)=f N(a,d)pida, (20)

wherep,, is the measure, its Lipschitz-#iter exponent isy
(i.e., p,>6%), and this relationship can be expressed1a8

X(q,5)=f p(a) 5% "da. (21)

Namely, if we cover the support of the measyrevith

f(a(q))=qae(a)—7(q). (23)

A multifractal measure will show af(«) curve with a
parabolic shape. Several meaningful parameters can be ob-
tained from the spectrum. Two of them a#g,,, and o,
which give the amplitude of the convex functiori(&))

[24], defined for the case whefifa)=0, asamax— &min-

In this work a direct determination of th «), as sug-
gested by Chhabra and Jend&d], is preferable. The fol-
lowing relationships were applied to calculd{e) anda(q)
from the normalized measure:

n(s)
24 Pi(a,9)loglpi(a,9)]

f(q)=;m l0g o , (24)
n(s)
2, pi(a,8)logpi(1,6)]

a(q)=m 09 o (25)

f(a) is then obtained by plottindg(q) vs «(q) for each
value ofq.

In this case the value af varies from—8 to +8 with an
increment of 0.5, and the number of poin{s) used in each
regression line, for a fixed, was always 13.

IV. RESULTS

In Fig. 2 we present the composite SOS for LINC/LICN at

nine different vibrational energies, chosen as the eigenener-

ies corresponding to quantum levels number 20 to 100 in

crements of 1(028]. The first four energieg2(a)—2(d)] are
above that of the least stable isomer, Li-CN, but below the
potential barrier for the isomerization process LiNCICN,
so that motion is classically possible in both potential wells,
depending on the initial conditions, but they are uncon-
nected. The other energi¢&(e)—2(i)], are above that barrier,
with the possibility of trajectories in which the Li atom orbits
around the CN fragment, exchanging its position between the
two wells (isomerization proceg3sAs can be seen in the
figures the dynamics in the Li-CN isomer wehigher in
energy is always more regular than that corresponding to the
Li-NC (lower in energy. Actually, it is only after level num-

segments of length, the number of such segments that scaleber 50[Plot 2d)] that a small band of stochasticity in the

like ¢, for a givena, behaves likeN(a,8)x 8~ (¥, In the

border of the available phase space appear. Also, two promi-
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FIG. 2. Classical Poincarsur-
face of section for the LINC/LICN
isomerization system at different
values of the vibrational energy:
2299.0 cm?, 2759.2 cm?,
3122.3 cm?, 3441.4 cm?,
3702.7 cm?,  3953.7 cm?,
4167.2 cm?,  4386.4 cm?,
4596.0 cm?, which correspond
to the quantum leveldl= 20, 30,
40, 50, 60, 70, 80, 90, 10@a)—
(i), respectively.

P, (a.u)

0 45 90 135 180
v (deg)

nent resonances of order 1:4 and 1:6, respectively, are vishis part is not completely unstructured. For one thing, the
ible. On the other hand, the dynamics in the LINC well ( dispersion of frequencies in the region inside the existing
=180°) present a mixed character, in which chaotic andcantorus is much larger, indicating that the behavior in this
regular motions coexist. Moreover, the fraction of the chaotiaegion is very chaotic. On the other hand, the ergodic dynam-
part grows with energy, in agreement with the statement ofcs in the outer part appears to be much milder, with a big
the KAM theorem. The location and extent of the differentaccumulation of points around the valug/v,=8 (this
possible resonances are also visible. It is also important teesonance also plays a very important role in the quantum
notice a conspicuous accumulation of chaotic points in plotglynamics of this system, as reported in R&83]).

2(b)—2(e), around the edge of the regular region centered on As discussed above, the dynamics at the higher energies
the LINC isomer. This accumulation is an indication of the[plots 3e)—3(i)] takes place in all range of angles, being the
difficulty that the trajectories have in getting in and out of two isomer wells connected. Here the cantorus is very de-
this region, being the signature of the existence of a vengtroyed, and the difference in behavior inside and outside it
intact cantoru$32], acting as an effective dynamical bottle- is not very significative. Also, it should be noticed that as
neck separating the chaotic region in two parts. It can also benergy increases, the 1:8 resonance begins to lose impor-
inferred from the figure that the effect of this cantorus tendgance, and the dynamics is less constrained; as a consequence
to dissapear as energy increafsse plots &)—2(i)]. the variations invg/v,, are bigger.

To obtain a more quantitative information of these struc- Let us examine now in more detail the part of the chaotic
tures, we have carried out a FA at the same energies consicegion in which the frequencies of the system vary more
ered above for trajectories starting on the SOS Wig=0 at  widely. For that purpose, we have concentrated in a small
different values of the initial angle. The results for the fre-area of phase space in the inner part of the cantorus, carrying
guency ratios,vg/v,, are shown versugy in Fig. 3. All out a FA on 10 trajectories starting at initial angleg,
resulting plots consist of two very different parts. One verybetween the two vertical lines drawn in Figs. 2 andr&
regular, formed by smooth, well behaved lines, correspondmember the conditio , ;=0 when locating the region in
ing to the regular regions in the SOS around the potentiaFig. 2). The trajectories have been followed for 9000 time
isomer wells. These lines are continuous, except for a fevintervals (22 p9. The corresponding frequency ratios as a
points associated with small discontinuities arising from lowfunction of the angle class= ,/180° (see Sec. lll ¢ are
order resonanceld4]. The second part in theg/v, curve  presented in Fig. 4. To make the figure clear we have repre-
appears in the central part of the plot and corresponds to theented only those points with,/v,<30. Several accumula-
chaotic part of the SOS. It is formed by a seemingly irregulaitions are noticed. For the state=20[plot 4(a)], frequencies
cloud of scattered points. However, as discussed in[R4f,  appear avg/v,=10, 11, 12. Notice that this result is partly
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FIG. 3. The frequency ratio as
a function of the initial angle for
an ensemble of trajectories started
along P,=0 cut on the SOS for
LINC/LICN at the same energies
as in Fig. 2.

FIG. 4. The frequency ratio of
the irregular region selected in
Fig. 3 for the same nine energies
as considered in the mentioned
figure. Plots(a)—(i) correspond to
the vibrational energies indicated
in Fig. 2.
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due to the election of the initial angles, and the resulting
values are not representative of the whole chaotic region at
this energy. However, this does not represent a problem for
our purposes, since we are only interested in this part of the
paper in the quantitative characterization of the tori destruc-
tion. ForN=30 and 4( plots 4b) and 4c)] the range opens

up to 8, 10, 12, and 14 and 8, 10, 12, and 16, respectively.
For N=50 [plot 4(d)] the interval reduces considerably to 8
and 10, plus a multitude of scattered points. Ner 60 and
70[plots 4e) and 4f)], that correspond to energies above the
isomerization barrier, the picture is more or less the same,
with the appearance of a new accumulation around the 1:6
resonance. Finally, foN=80-100(plots g-) the only vis-

ible accumulation takes place aroung/v,=8, and the
“sticking” power of this resonance seems to decrease with
the excitation energy.

To make this visual description more quantitative, we
have performed a MFA of these point distributions. The mul-
tifractal spectra of the frequency distributions are shown in
Fig. 5, where for the sake of clarity the results are presented
in two plots, corresponding to states with energies below and
above the isomerization barrier, respectively. The shape of
f(«) shows clearly that we are in the presence of a multi-
fractal at all energies considered. Similar results have also
been reported in the literature for the analysis of the scaling
structure of power spectra in dynamical systdig4]. The
variation of the calculated slopes depending on the number
of points used in the regression line was studied. The slope
value varied when the number of points were less than 10,
and for a regression line of 10 points and more the differ-
ences were statistically nonsignificant. Based on this analysis
and taking into account the demanding computational time
of the calculations, the number of points selected to calculate
the slope values of the regression lines were 13.

Another point worth commenting on is the convexity of
the f versusa curve, which is not symmetric with respect to
its maximum. This can be ascertained by comparing the val-
ues off(a) for q=8 andg= —8. The appearance of lower
values in the positive sidéeft side of the curveof the g’s
correlates with a bigger influence of the highest values of the
FM in the spectral complexity. On the contrary, lower values
of f(a) for negativeq’s (right side of the curveindicate a
higher influence of the lowest values in the complexity. In
our case, almost all results correspond to the first option,
except forN=30 and 100 in Fig. 8\), andN=24, 28 and
30 in Fig. §B), where the lower values of FM are given
more complexity to the structure of the spectra. The effect
can also be appreciated by careful examination of points in
Fig. 4. FIG. 5. Multifractal spectrd(a) of the frequency distribution

The variations in the complexity of the spectra can befor LINC/LICN (part A) for energies belowtop) and above(bot-
ascertained[24] by plotting their amplitudesAa=a,c  tom) the isomerization barrier. The different curves correspond to
—amin, Obtained at different energies versus the vibrationathe energies of the statdé=20 (*), 30 (A), 40 (®), 50 (¢);
energy. The corresponding results are shown in Fig. 6, wher@ottom 60 (+), 70 (x), 80 (A), 90 (O), and 100 (J). Part B
it can be seen that, although the overall tendency is towardsorrespond to the energies 2299.0 ¢m 2431.7 cm?,
complexity, this behavior is not smooth and the curve pre2549.2 cmi', 2630.5 cm', 27443 cm', 2759.2 cm’,
sents some oscillations. The changesiia are consistent 2852.9 cm‘, 2930.6 cm*, 2981.4 cm', 3094.8 cm*,
with the distributions of the frequency ratios and the normal-3122.3 cm*, associated with the following statetop) N=20
ized measur@ at each energy. Then, for the energies corre{*), 22 (A), 24 (@), 26 (¢), 28 (x); (bottom) 30 (+), 32 (x), 34
sponding to states 20 to 40 the valuedof increases, which  (£). 36 (©), 38 (1) and 40 §).

f o)

f (@)
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0.36
0.30 —
025 —
0.32 — \/
= 0.20 |
] 2200 2750 3300 . .
L 008 | FIG. 6. Multifractal amplitude A a= oy
g > —amin corresponding to Fig. 5 as function of the
s vibrational energy. The inset corresponds to the
L result of Fig. %B)
0.24 — //
0.20 | ' |
2000 3000 4000 5000
E(cm™)
is a reflection of the fact that the distributipsee Figs. da)— lar tori for the molecular vibration of the isomerizing system

4(c)] divides in several clouds of points centered around dif-LiNC/LICN. The system is described by a realistic 2dof
ferent values obr/v,. After that, for states 50, 60, and 70, model, in which the potential energy surface is taken fedm
the tendency reverses, gettidgr for N=60 the same low jnjtio calculations existing in the literature. The interaction

value as obtained faN=30. In this process the complexity nstential corresponds to a highly anharmonic double well
of the spectrum decreases as a consequence of the accu”%@'parated by a moderate energy barrier

lation of points around the Valu.eR/V*’ZB' F|'nally, for The classical results have been analyzed using both the

states above the 80th the increasing tef‘dei“‘?y Is regained aﬂ'g\ditional procedure of constructing Poincaserfaces of

Fhe rangti .Off:h valuesb spr?ads_ ?Ut’ ttkr:lilsh mdutI:ed b3; t";l]nsection, and the method of frequency analysis. This latter

;?cremnen |rr1 fi N r\]l\lljr:q herir? rpom S V\f['h '9 nfr lv?(if:es ? themethod has revealed the existence of two different regimes
equency ratio ¢ creases the compiexity o €in the chaotic dynamics of the system under study, one inside

spectra. . . : . an existing cantorus acting as an efficient dynamical barrier,
To conclude this section, let us examine now in more

detail th It ding to the i . ah of and the other outside the surface defined by this invariant
etail the resufts corresponding 1o the Increasing pat@t g e Moreover, at low energies the chaotic character of
between the energies corresponding\te 20 and 40 at in-

. . the trajectories has been found to be stronger in the inner part
tervals of two energy levels. For this purpose the multifractal

. ) of the cantori than outside it. Also, this difference tends to
spectra of the frequgncy distributions at_thls range of ENelGecrease with energy, since the cantorus get more destroyed.
gies have been obtained and are shown in FiB).9n it we !

o . .__In the outside region the chaotic dynamics of the LINC/LICN
can observe a generally S|m|_Iar_behaV|or that was obtaine ppear to be strongly influenced by a 1:8 resonance between
forl thehwhole ranged(_)f energllfﬁ§égés5(é)]. From theie '€ the stretching Li-NC and the bending modes. At higher en-
sults the corresponding amplitudesa = amayx— amin, have ergies another resonance, namely the 1:6, starts to be impor-
been also obtained and plotted versus the vibrational energy + The corresponding POs not only govern the classical
in the inset of Fig. 6. :

Aaain. althouah in th Il behavior th ral motion of the system, but also play an important role in the
gain, aithough In the overall behavior theé Spectral COM-, g4 jateq guantum mechanics. Accordingly, many states are

plexity increases with the excitation energy, this tendency 'Sound to be scarred by these simple classical structures.
not monotonous, and several up and downs are appreciated The KAM theorem provides an explanation for the

in the curve. What is more remarkable is that these OSC'”afnechanism of destruction of tori in the region inside the

tions are similar to those exh_ibited by the_ c_o_mplete curve aby e mentioned cantori. By analyzing the frequency map
a greater scale, thus_ suggesting the possibility that the wholgyg s obtained in a small area of this region, we have
curve may be self-similar. shown in this paper the existence of a multifractal structure
V. CONCLUSION whose Comple)fity varies Wi_th the total vibrational energy Qf
the system. This structure is related to the proportion of in-
In this paper we have presented and analyzed in detail thiict new cantori and the more destroyed ones. The multifrac-
phase space structure of the chaotic region closer to the regtal scaling has been also discussed.
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Finally, one point worth considering is that of the limits of times behavior exists as a function of the hyperbolic or non-
validity of the conclusions drawn in this work. For example, hyperbolic character of the underlying chaotic dynamics
to what extent the multifractal structures described here are [87]. This will be the subject of a future paper.
general phenomenon and the destruction of tori is governed

by some kind of renormalization propertig35]. In this re- ACKNOWLEDGMENT
spect, we are currently extending our studies to ofseat-
tering) chaotic system§36], in which the possibility of dif- This work was supported in part by DGESpain under

ferent types(exponential versus potential lavof escaping Contract No. BFM2000-347.
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