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Multifractal analysis of tori destruction in a molecular Hamiltonian system
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In this paper, an analysis of the phase space structure of the isomerizing molecular system LiNC/LiCN,
using Poincare´ surfaces of section and frequency analysis, is presented. The scaling structure of the frequency
map in the chaotic region next to the regular part corresponding to the stable linear isomer LiNC is studied
using multifractal analysis. This approach is a way to characterize quantitatively the complexity in the mecha-
nism of the tori destruction in a molecular Hamiltonian system that exhibits soft chaos as the vibrational energy
of the system increases.
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I. INTRODUCTION

From the vibrational point of view, molecules can be co
sidered as Hamiltonian systems formed by a collection
nonlinear anharmonic coupled oscillators. The correspond
classical dynamics can be interpreted in terms of phase s
structures that, although envisaged by Poincare´ at the end of
the nineteenth century, could only be properly studied a
the development of modern digital computers@1#. For low
levels of excitations molecular motions take place in the
cinity of the minima of the potential energy surface, defin
within the Born-Oppenheimer approximation. In this ha
monic regime the motion is regular, corresponding to
well known normal mode picture@2#. The combination of
anharmonicities and strong mode couplings, as vibratio
energy increases, makes molecules nonintegrable dynam
systems, with the possibility of undergoing chaotic moti
@3#. The celebrated Kolmogorov-Arnold-Moser~KAM ! theo-
rem provides a very powerful framework to understand t
transition to chaos. When some perturbation acts on an i
grable system some tori are destroyed, but those with ‘‘ir
tional enough’’ frequency ratios~in the sense of the KAM
condition!, called KAM tori, survive@4#. In two-degrees-of-
freedom~2dof! systems, these structures establish a hie
chical organization of phase space. The family of persis
KAM tori, parametrized by a Cantor set of frequency vecto
in the ‘‘holes’’ of which chaotic behavior takes place, cons
tutes an impenetrable barrier for the flux of trajector
across. The destroyed tori turn into periodic orbits~PO!, ho-
moclinic tangles, and cantori@3#. Periodic orbits correspond
to resonant motion~rational frequency ratio! and are orga-
nized in phase space according to a Farey tree distribu
@5#. Emanating from each unstable PO fixed point there
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two associated manifolds, one incoming and another ou
ing, whose repeated crossings form the homoclinic tangl
band of stochasticity that can be tiled, classifying the diff
ent regions according to their dynamical properties@1#. Can-
tori are fractal objects@6#, originated by the destruction o
the ‘‘not irrational enough’’ tori in the unperturbed system
that act as partial barriers in the chaotic regions of ph
space. As perturbation increases, the fractal dimension
these structures decreases, and the corresponding barri
fect weakens@7#; at the same time more and more KAM to
enter into this category. Then, the dynamical bottleneck i
given phase space region corresponds to the most intact
tori, i.e., the last broken KAM torus corresponding to th
with the most irrational frequency ratio. According to th
continued fraction theory@8#, this corresponds to the golde
mean, defined as
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. ~1!

The destruction of tori has been systematically studied
the standard map@3# by a number of authors@9#, and some
fractal structures in the diagrams of the breakup of tori h
been identified by Schmidt and Bialek@10#.

There are numerous methods to investigate the struc
of phase space. In systems with a 2dof composite Poin´
surface of section~SOS!, consisting of the intersection of th
trajectories at a given energy with suitable surfaces, ther
more informative than other tools@11#, such as Lyapunov
exponents or Kolmogorov entropy. Unfortunately, a SOS
not feasible for systems with more than 2dof.

An alternative method is that of frequency analysis~FA!,
which is based on a Fourier representation of trajector
The FA method involves monitoring the variations of th
fundamental frequencies of the system with time. In the c
of regular motion, an analytical representation for the so
tion of the Hamilton equations of motion is obtaine
©2001 The American Physical Society13-1
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TARQUIS, LOSADA, BENITO, AND BORONDO PHYSICAL REVIEW E65 016213
whereas when the dynamics are chaotic the expansion
not converge. However, FA is still able to provide some
formation of the local~short time dynamics! characteristics
of the chaotic motion. The advantage of this method is tha
can be applied equally easily to systems with more than 2
@12#, so that is suitable to study the poorly understood Arn
web @13#.

In a previous paper@14# we used the FA, as implemente
by Laskar@15# in his analysis of the stability of the sola
system@16#, to study the phase space structure and lo
behavior of chaotic trajectories of a complex molecu
isomerizing system: the LiNC/LiCN molecule. One of th
most interesting conclusions of the paper was to reveal t
contrary to what could be expecteda priori, the chaotic re-
gion for energies in the range 2950–3850 cm21 was ex-
tremely influenced by a single PO, in which the stretch
Li-CN and the bending motions were coupled by a 1:8~fre-
quency! resonance. Frequency maps provide very useful
formation on the way in which the trajectories evolve
phase space.

The aim of this paper is to study in deeper detail t
characteristics of the chaotic region, especially its bor
near the regular one, in this molecular system. As it is w
known, the coexistence of the different types of dynami
structures that we have just described impose a fractal s
ture, self-similar at different scales, into the phase spac
which they are embedded. For this purpose, we will carry
a multifractal analysis~MFA! @17# of the frequency map con
sisting of the frequency ratio vs the initial bending ang
representation. Furthermore, by considering the results
tained at different values of the excitation energy, we c
follow the process of destruction of KAM tori.

Other complex processes occurring in nature, such as
bulence@18#, large-scale structure formation@19#, particle
size distribution in soils@20# or diffusion-limited aggregation
@21#, to name just a few, are also believed to be organize
a self-similar or self-affine way. Statistical self-similar me
sures arise naturally in phenomena associated with nonli
or chaotic systems. A convenient tool to characterize the c
figurations of these processes is also MFA@22,23#, which
considers the statistics of singularity strengths of multi
local scale invariance, since in most cases a specific des
tion of the system must be abandoned in favor of probab
tic ones. This scale invariance is normally a consequenc
some hierarchical organization of the underlying proc
@18#. So in this way moments and cumulants are studied
get information and characterize scale invariance or s
affinity, or to detect them if this is not the case.

The organization of the paper is as follows. In Sec. II t
model is briefly described. Section III is devoted to the d
scription of the computational methods used in this pap
The results of our work are presented and discussed in
IV, and finally we end the paper by summarizing our conc
sions in Sec. V.

II. MODEL

In this paper we study the vibrational dynamics of t
isomerizing molecular system LiCN/LiNC using classic
01621
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mechanics. This is a floppy molecule with a large amplitu
motion in the bending Li-CN coordinate which couples ve
efficiently with the corresponding stretching mode, and
high frequency mode associated with the stiff C[N chemi-
cal bond. Accordingly, the CN mode can be considered fr
the practical point of view separated from the rest of mole
lar motions, and a reduced 2dof model, in which the C[N
distance is held frozen at its equilibrium value ofr e52.186
a.u., can be used to adequately describe its dynamics.
floppy bending motion samples big regions of the poten
energy surface, and then chaos sets in at very moderate
ues of the excitation energy.

The classical vibrational (J50) Hamiltonian is given by

H5
PR

2

2mLi-CN
1

1

2 S 1

mLi-CNR2
1

1

mC-Nr e
2D Pu

21V~R,u!,

~2!

where R is the distance from the Li atom to the center
mass of the CN fragment,u is the angle between the N-C
andR vectors, andPR and Pu are the corresponding conju
gate momenta.

The potential energy surface,V(R,u), shown in Fig. 1 in
the form of a contour plot, has been taken from the literat
@25#, and consists of a ten term expansion in Legendre po
nomials,

V~R,u!5 (
l50

9

Vl~R!Pl~cosu!, ~3!

fitted toab initio calculations. As can be observed, it has tw
potential wells corresponding to the stable linear isome
Li-NC (u5180°) and Li-CN (u50°). Theminimum energy
path, Re(u), connecting these two isomers has also be
plotted in the figure.

III. COMPUTATIONAL METHODS

A. Dynamical study

The dynamics of the system is studied using classical
jectories calculated by numerical integration of the Hamilt

FIG. 1. Contour plot of the potential energy surface of LiN
LiCN. The minimum energy path connecting the two potent
wells is shown superimposed as a dotted line.
3-2
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MULTIFRACTAL ANALYSIS OF TORI DESTRUCTION . . . PHYSICAL REVIEW E65 016213
equations of motion corresponding to Eq.~2!, using a hybrid
Gear algoritm@26#. The phase space structure is visualiz
by computing a Poincare´ SOS taking the sectioning plan
lying along the minimum energy path,Re(u) @27#. Owing to
the fact that the sectioning coordinate does not correspon
a constant value of any of the canonical coordinates use
define the Hamiltonian function, the Poincare´ SOS so de-
fined does not have the~important! property of being an
area-preserving map. In order to solve this problem we m
the following canonical transformation@28#:

r5R2Re~u!,

c5u,

Pr5PR ,

Pc5Pu1S dRe

du D Pr . ~4!

With these new coordinates we can now define the Poin´
SOS asr50 with Pr chosen as one of the roots obtained
substituting Eq.~4! in Eq. ~2!, which corresponds to mappin
the trajectories of the system in the (c,Pc) plane.

B. Frequency analysis„FA…

For each trajectory the complex functions

f R~ t !5R~ t !1 iPR~ t !,

f u~ t !5u~ t !1 iPu~ t !, ~5!

defined in the time interval@2T,T#, were analyzed by car
rying out FA as described below.

The f (t) functions can be written as

f ~ t !5 (
n52`

`

aneipnt/T, ~6!

where the coefficientsan are the projection off (t) on the
Fourier basis elements,en5exp(ipnt/T),

an5^eipnt/Tu f ~ t !&, ~7!

where^ u & denotes a complex symmetric inner product, a
not a complex conjugation as usually done in quantum m
chanics. The frequencies calculated by the Fourier transf
are determined within a precision ofp/T @29#. To go beyond
this approximation one must resort to a different basis
using a better suited set of exponents. For this purpose
will use the prescription developed by Laskar@15#. The first
frequency,n1, is chosen to maximize the scalar product

f1~n!5^ein1tu f ~ t !&, ~8!
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starting from an initial guess calculated with a standard f
Fourier transform~FFT! method@29#. The other frequencies
are obtained in a similar way by searching for those value
nn maximizing

fn~n!5^einntu f n21~ t !&, ~9!

where the f n21(t) functions are obtained by eliminatin
from f (t) the contributions from the previously determine
frequencies,$n1 ,n2 , . . . ,nn21%.

Since the basis set formed by the elementseinnt is not
orthogonal, it is necessary at this point to carry out a Gra
Schmidt orthonormalization procedure. After that, one o
tains f (t) as

f ~ t !5(
n

bneinnt. ~10!

In this way very accurate fundamental frequencies can
determined.

When performing the scalar products a Hanning wind
filter,

x~ t !511cos~pt/T!, ~11!

is used to accelerate convergence.

C. Multifractal analysis „MFA …

The results obtained from the frequency analysis are s
ied in terms of the percentage of frequencies distributed
different initial conditions (u angle! . Thus, the measurepi in
this system is defined by the fraction of the frequencies in
angle class ‘‘i .’’ The support of this measure is the set of re
numbers corresponding tou values fromu0 to u f degrees.
Thus,pi can be interpreted as the probability of finding fr
quencies of a certain value within theu interval i being
p(u0 ,u f #51 ~or 100%!.

The structure of this probability measurep on the segment
(u0 ,u f # may be defined by the scaling relationship

p}da as d→0, ~12!

where the scaling exponenta is the so-called Lipschitz-
Hölder exponent, andd is the length of the subintervals i
which the total segment is divided.

In general the concentration of frequencies varies wid
over the interval (u0 ,u f # and a different behavior is observe
in different spatial positions. Thus, a spectrum of values
a, that correspond to different spatial positions, can be
fined. In fact, every measurepi may be characterized bya i
such thatpi}da i. Hence the singularity exponenta is a func-
tion of the positioni, many sitesi may share the same expo
nents when a regular covering of sized is chosen. Therefore
let N(a,d) be the number of sitesi that share the sam
measurepi , which presents the following scaling relation
ship:

N~a,d!}d2 f (a) as d→0, ~13!
3-3
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TARQUIS, LOSADA, BENITO, AND BORONDO PHYSICAL REVIEW E65 016213
where thef (a) singularity spectrum describes the statistic
distribution of the Ho¨lder exponenta, or in other words
gives information of how often specific valuesa of the sin-
gularity strengths occur@22#.

This indicates that the density of segments@r(a)# of
length d with the Hölder exponent valuea in the range
(a,a1da) is approximatelyd2 f (a), due to

N~a,d!5r~a!da. ~14!

There are several methods to calculate thef (a) singularity
spectrum. The method we have used is based on a qua
called the partition function„x(q,d)…, introduced by the
method of the moments@30#, as

„x~q,d!…5(
i 51

n(d)

pi
q , ~15!

wheren(d) is the number of subintervals of sized in the
largest interval (u0 ,u f #, andq is the weight or moment of the
measure. This partition function depends on the scaled and
on the exponentq as it can be observed in Eq.~15!. A log-log
plot of a self-similar measure„x(q,d)… vs d at various values
for q will give

„x~q,d!…;d2t(q), ~16!

wheret(q) is theqth mass exponent@22# and sometimes is
called the Renyi exponent@23#. We can expresst(q) as

t~q!52 lim
d→0

log~x„q,d!…

logd
. ~17!

Then the generalized dimensionDq can be introduced by
the following scaling relationship@23#:

Dq5 lim
d→0

log„x~q,d!…

~q21!logd
, ~18!

and therefore

t~q!5~q21!Dq . ~19!

On the other hand, the partition function can be expresse

x~q,d!5E N~a,d!pa
qda, ~20!

wherepa is the measure, its Lipschitz-Ho¨lder exponent isa
~i.e., pa}da), and this relationship can be expressed as@17#

x~q,d!5E r~a!dqa2 f (a)da. ~21!

Namely, if we cover the support of the measurep with
segments of lengthd, the number of such segments that sc
like da, for a givena, behaves likeN(a,d)}d2 f (a). In the
01621
l
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limit d→0, the sum ofp(q,d) is dominated by the term
dmina(qa2f(a)). Thent(q) can be expressed as

t~q!5mina@qa2 f ~a!#. ~22!

Thus, t(q) is obtained by Legendre transforming th
f (a). When f (a)andt(q) are smooth functions we can ex
press@17#

a~q!52
d

dq
t~q!,

f „a~q!…5qa~q!2t~q!. ~23!

A multifractal measure will show anf (a) curve with a
parabolic shape. Several meaningful parameters can be
tained from the spectrum. Two of them areamax and amin
which give the amplitude of the convex function (f (a))
@24#, defined for the case whenf (a)50, asamax2amin .

In this work a direct determination of thef (a), as sug-
gested by Chhabra and Jensen@31#, is preferable. The fol-
lowing relationships were applied to calculatef (q) anda(q)
from the normalized measure:

f ~q!5 lim
d→0

(
i 50

n(d)

pi~q,d!log@pi~q,d!#

logd
, ~24!

a~q!5 lim
d→0

(
i 50

n(d)

pi~q,d!log@pi~1,d!#

logd
. ~25!

f (a) is then obtained by plottingf (q) vs a(q) for each
value ofq.

In this case the value ofq varies from28 to 18 with an
increment of 0.5, and the number of pointsn(d) used in each
regression line, for a fixedq, was always 13.

IV. RESULTS

In Fig. 2 we present the composite SOS for LiNC/LiCN
nine different vibrational energies, chosen as the eigene
gies corresponding to quantum levels number 20 to 100
increments of 10@28#. The first four energies@2~a!–2~d!# are
above that of the least stable isomer, Li-CN, but below
potential barrier for the isomerization process LiNC
LiCN,
so that motion is classically possible in both potential we
depending on the initial conditions, but they are unco
nected. The other energies,@2~e!–2~i!#, are above that barrier
with the possibility of trajectories in which the Li atom orbi
around the CN fragment, exchanging its position between
two wells ~isomerization process!. As can be seen in the
figures the dynamics in the Li-CN isomer well~higher in
energy! is always more regular than that corresponding to
Li-NC ~lower in energy!. Actually, it is only after level num-
ber 50 @Plot 2~d!# that a small band of stochasticity in th
border of the available phase space appear. Also, two pro
3-4
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FIG. 2. Classical Poincare´ sur-
face of section for the LiNC/LiCN
isomerization system at differen
values of the vibrational energy
2299.0 cm21, 2759.2 cm21,
3122.3 cm21, 3441.4 cm21,
3702.7 cm21, 3953.7 cm21,
4167.2 cm21, 4386.4 cm21,
4596.0 cm21, which correspond
to the quantum levelsN520, 30,
40, 50, 60, 70, 80, 90, 100,~a!–
~i!, respectively.
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nent resonances of order 1:4 and 1:6, respectively, are
ible. On the other hand, the dynamics in the LiNC wellu
5180°) present a mixed character, in which chaotic a
regular motions coexist. Moreover, the fraction of the chao
part grows with energy, in agreement with the statemen
the KAM theorem. The location and extent of the differe
possible resonances are also visible. It is also importan
notice a conspicuous accumulation of chaotic points in p
2~b!–2~e!, around the edge of the regular region centered
the LiNC isomer. This accumulation is an indication of t
difficulty that the trajectories have in getting in and out
this region, being the signature of the existence of a v
intact cantorus@32#, acting as an effective dynamical bottle
neck separating the chaotic region in two parts. It can also
inferred from the figure that the effect of this cantorus ten
to dissapear as energy increases@see plots 2~f!–2~i!#.

To obtain a more quantitative information of these stru
tures, we have carried out a FA at the same energies con
ered above for trajectories starting on the SOS withPc50 at
different values of the initial angle. The results for the fr
quency ratios,nR /nu , are shown versusc0 in Fig. 3. All
resulting plots consist of two very different parts. One ve
regular, formed by smooth, well behaved lines, correspo
ing to the regular regions in the SOS around the poten
isomer wells. These lines are continuous, except for a
points associated with small discontinuities arising from l
order resonances@14#. The second part in thenR /nc curve
appears in the central part of the plot and corresponds to
chaotic part of the SOS. It is formed by a seemingly irregu
cloud of scattered points. However, as discussed in Ref.@14#,
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this part is not completely unstructured. For one thing,
dispersion of frequencies in the region inside the exist
cantorus is much larger, indicating that the behavior in t
region is very chaotic. On the other hand, the ergodic dyna
ics in the outer part appears to be much milder, with a
accumulation of points around the valuenR /nu58 ~this
resonance also plays a very important role in the quan
dynamics of this system, as reported in Ref.@33#!.

As discussed above, the dynamics at the higher ener
@plots 3~e!–3~i!# takes place in all range of angles, being t
two isomer wells connected. Here the cantorus is very
stroyed, and the difference in behavior inside and outsid
is not very significative. Also, it should be noticed that
energy increases, the 1:8 resonance begins to lose im
tance, and the dynamics is less constrained; as a consequ
the variations innR /nc are bigger.

Let us examine now in more detail the part of the chao
region in which the frequencies of the system vary mo
widely. For that purpose, we have concentrated in a sm
area of phase space in the inner part of the cantorus, carr
out a FA on 104 trajectories starting at initial angles,c0,
between the two vertical lines drawn in Figs. 2 and 3~re-
member the conditionPc,050 when locating the region in
Fig. 2!. The trajectories have been followed for 9000 tim
intervals ~22 ps!. The corresponding frequency ratios as
function of the angle class,i 5c0/180° ~see Sec. III C! are
presented in Fig. 4. To make the figure clear we have re
sented only those points withnR /nu<30. Several accumula
tions are noticed. For the stateN520 @plot 4~a!#, frequencies
appear atnR /nu510, 11, 12. Notice that this result is partl
3-5
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FIG. 3. The frequency ratio as
a function of the initial angle for
an ensemble of trajectories starte
along Pc50 cut on the SOS for
LiNC/LiCN at the same energies
as in Fig. 2.

FIG. 4. The frequency ratio of
the irregular region selected in
Fig. 3 for the same nine energie
as considered in the mentione
figure. Plots~a!–~i! correspond to
the vibrational energies indicate
in Fig. 2.
016213-6
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due to the election of the initial angles, and the result
values are not representative of the whole chaotic regio
this energy. However, this does not represent a problem
our purposes, since we are only interested in this part of
paper in the quantitative characterization of the tori destr
tion. ForN530 and 40@plots 4~b! and 4~c!# the range opens
up to 8, 10, 12, and 14 and 8, 10, 12, and 16, respectiv
For N550 @plot 4~d!# the interval reduces considerably to
and 10, plus a multitude of scattered points. ForN560 and
70 @plots 4~e! and 4~f!#, that correspond to energies above t
isomerization barrier, the picture is more or less the sa
with the appearance of a new accumulation around the
resonance. Finally, forN580–100~plots g-i! the only vis-
ible accumulation takes place aroundnR /nu58, and the
‘‘sticking’’ power of this resonance seems to decrease w
the excitation energy.

To make this visual description more quantitative, w
have performed a MFA of these point distributions. The m
tifractal spectra of the frequency distributions are shown
Fig. 5, where for the sake of clarity the results are presen
in two plots, corresponding to states with energies below
above the isomerization barrier, respectively. The shape
f (a) shows clearly that we are in the presence of a mu
fractal at all energies considered. Similar results have a
been reported in the literature for the analysis of the sca
structure of power spectra in dynamical systems@34#. The
variation of the calculated slopes depending on the num
of points used in the regression line was studied. The sl
value varied when the number of points were less than
and for a regression line of 10 points and more the diff
ences were statistically nonsignificant. Based on this anal
and taking into account the demanding computational t
of the calculations, the number of points selected to calcu
the slope values of the regression lines were 13.

Another point worth commenting on is the convexity
the f versusa curve, which is not symmetric with respect
its maximum. This can be ascertained by comparing the
ues of f (a) for q58 andq528. The appearance of lowe
values in the positive side~left side of the curve! of the q’s
correlates with a bigger influence of the highest values of
FM in the spectral complexity. On the contrary, lower valu
of f (a) for negativeq’s ~right side of the curve! indicate a
higher influence of the lowest values in the complexity.
our case, almost all results correspond to the first opt
except forN530 and 100 in Fig. 5~A!, andN524, 28 and
30 in Fig. 5~B!, where the lower values of FM are give
more complexity to the structure of the spectra. The eff
can also be appreciated by careful examination of point
Fig. 4.

The variations in the complexity of the spectra can
ascertained@24# by plotting their amplitudes,Da5amax
2amin , obtained at different energies versus the vibratio
energy. The corresponding results are shown in Fig. 6, wh
it can be seen that, although the overall tendency is towa
complexity, this behavior is not smooth and the curve p
sents some oscillations. The changes inDa are consistent
with the distributions of the frequency ratios and the norm
ized measurep at each energy. Then, for the energies cor
sponding to states 20 to 40 the value ofDa increases, which
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FIG. 5. Multifractal spectraf (a) of the frequency distribution
for LiNC/LiCN ~part A! for energies below~top! and above~bot-
tom! the isomerization barrier. The different curves correspond
the energies of the statesN520 (*), 30 (m), 40 (d), 50 (L);
~bottom! 60 (1), 70 (!), 80 (n), 90 (s), and 100 (h). Part B
correspond to the energies 2299.0 cm21, 2431.7 cm21,
2549.2 cm21, 2630.5 cm21, 2744.3 cm21, 2759.2 cm21,
2852.9 cm21, 2930.6 cm21, 2981.4 cm21, 3094.8 cm21,
3122.3 cm21, associated with the following states:~top! N520
(*), 22 (m), 24 (d), 26 (L), 28 (!); ~bottom! 30 (1), 32 (!), 34
(n), 36 (s), 38 (h) and 40 (!).
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FIG. 6. Multifractal amplitude Da5amax

2amin corresponding to Fig. 5 as function of th
vibrational energy. The inset corresponds to t
result of Fig. 5~B!
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is a reflection of the fact that the distribution@see Figs. 4~a!–
4~c!# divides in several clouds of points centered around
ferent values ofnR /nu . After that, for states 50, 60, and 70
the tendency reverses, gettingDa for N560 the same low
value as obtained forN530. In this process the complexit
of the spectrum decreases as a consequence of the acc
lation of points around the valuenR /nu58. Finally, for
states above the 80th the increasing tendency is regained
the range ofa values spreads out; this is induced by
increment in the number of points with higher values of t
frequency ratio which increases the complexity of t
spectra.

To conclude this section, let us examine now in mo
detail the results corresponding to the increasing part ofDa
between the energies corresponding toN520 and 40 at in-
tervals of two energy levels. For this purpose the multifrac
spectra of the frequency distributions at this range of en
gies have been obtained and are shown in Fig. 5~B!. In it we
can observe a generally similar behavior that was obtai
for the whole range of energies@Fig. 5~A!#. From these re-
sults the corresponding amplitudes,Da5amax2amin , have
been also obtained and plotted versus the vibrational en
in the inset of Fig. 6.

Again, although in the overall behavior the spectral co
plexity increases with the excitation energy, this tendenc
not monotonous, and several up and downs are apprec
in the curve. What is more remarkable is that these osc
tions are similar to those exhibited by the complete curve
a greater scale, thus suggesting the possibility that the w
curve may be self-similar.

V. CONCLUSION

In this paper we have presented and analyzed in detai
phase space structure of the chaotic region closer to the r
01621
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lar tori for the molecular vibration of the isomerizing syste
LiNC/LiCN. The system is described by a realistic 2d
model, in which the potential energy surface is taken fromab
initio calculations existing in the literature. The interactio
potential corresponds to a highly anharmonic double w
separated by a moderate energy barrier.

The classical results have been analyzed using both
traditional procedure of constructing Poincare´ surfaces of
section, and the method of frequency analysis. This la
method has revealed the existence of two different regim
in the chaotic dynamics of the system under study, one ins
an existing cantorus acting as an efficient dynamical barr
and the other outside the surface defined by this invar
structure. Moreover, at low energies the chaotic characte
the trajectories has been found to be stronger in the inner
of the cantori than outside it. Also, this difference tends
decrease with energy, since the cantorus get more destro
In the outside region the chaotic dynamics of the LiNC/LiC
appear to be strongly influenced by a 1:8 resonance betw
the stretching Li-NC and the bending modes. At higher e
ergies another resonance, namely the 1:6, starts to be im
tant. The corresponding POs not only govern the class
motion of the system, but also play an important role in t
associated quantum mechanics. Accordingly, many states
found to be scarred by these simple classical structures.

The KAM theorem provides an explanation for th
mechanism of destruction of tori in the region inside t
above-mentioned cantori. By analyzing the frequency m
results obtained in a small area of this region, we ha
shown in this paper the existence of a multifractal struct
whose complexity varies with the total vibrational energy
the system. This structure is related to the proportion of
tact new cantori and the more destroyed ones. The multif
tal scaling has been also discussed.
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Finally, one point worth considering is that of the limits
validity of the conclusions drawn in this work. For examp
to what extent the multifractal structures described here a
general phenomenon and the destruction of tori is gover
by some kind of renormalization properties@35#. In this re-
spect, we are currently extending our studies to open~scat-
tering! chaotic systems@36#, in which the possibility of dif-
ferent types~exponential versus potential law! of escaping
s

y

s
s

om

-

,

.

,

01621
,
a
d

times behavior exists as a function of the hyperbolic or n
hyperbolic character of the underlying chaotic dynam
@37#. This will be the subject of a future paper.
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